Compensated optimal grids for elliptic boundary-value problems
نویسندگان
چکیده
منابع مشابه
Compensated optimal grids for elliptic boundary-value problems
A method is proposed which allows to efficiently treat elliptic problems on unbounded domains in two and three spatial dimensions in which one is only interested in obtaining accurate solutions at the domain boundary. The method is an extension of the optimal grid approach for elliptic problems, based on optimal rational approximation of the associated Neumann-to-Dirichlet map in Fourier space....
متن کاملEquidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملElliptic Boundary-Value Problems
In the first part of this chapter we focus on the question of well-posedness of boundary-value problems for linear partial differential equations of elliptic type. The second part is devoted to the construction and the error analysis of finite difference schemes for these problems. It will be assumed throughout that the coefficients in the equation, the boundary data and the resulting solution ...
متن کاملequidistribution grids for two-parameter convection–diffusion boundary-value problems
in this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. a numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. truncation errors are derived for both continuous and discontinuous problems. parameter uni...
متن کاملSub - Elliptic Boundary Value Problems Forquasilinear Elliptic
Classical solvability and uniqueness in the HH older space C 2+ () is proved for the oblique derivative problem a ij (x)D ij u + b(x; u; Du) = 0 in ; @u=@`= '(x) on @ in the case when the vector eld`(x) = (` 1 (x); : : : ; ` n (x)) is tangential to the boundary @ at the points of some non-empty set S @; and the nonlinear term b(x; u; Du) grows quadratically with respect to the gradient Du. 0. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2008
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2008.06.026